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Nature of the parametrically excited bound soliton state

Xinlong Wang*
Institute of Acoustics, Nanjing University, Nanjing 210093, People’s Republic of China

~Received 20 April 1998!

The internal dynamics of the parametrically excited bound state of double solitons is explored, in particular,
the periodic ‘‘collision’’ behavior of the identical solitons. The results reveal the collapse-recreation mecha-
nism of the endless ‘‘collisions,’’ in which momentum of each soliton always flows toward the symmetric
center of the state. It is also found that damping dissipation plays an important role in maintaining the regular
dynamics of ‘‘collisions.’’ In weakly dissipative media, the parametric excitation of some other internal
oscillation mode of high frequency can have the soliton-soliton interaction irregular, or can even break the
spatial symmetry.@S1063-651X~98!07711-3#

PACS number~s!: 03.40.Kf, 47.35.1i, 47.20.Ky, 42.65.Tg
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Bound states of solitons have been an active topic in s
ton physics. As is well known, the bound states in the st
dard nonlinear Schro¨dinger~NLS! system are unstable due
the zero binding energy@1#. However, several recent inves
tigations@2–7# have shown that stable bound states may
ist in various perturbed NLS and related equations that
usually of thedriven-dampedtype. In these systems@2–5#, a
combination of dispersion and dissipation effects renders
soliton tails exponentially decaying with oscillations rath
than simple decaying. These tails will naturally give rise to
set of local minima of the interaction potential@1#, which
account for the formation of the bound states. In gene
such stable bound states take the forms of the fixed po
@2,3,6,7# or the infinite-period limit cycle@5# of the underly-
ing dynamical systems. What interests us here is theoscilla-
tory bound state that was experimentally observed@8,9# in
Faraday’s water resonator and numerically reproduced@10#
with the parametrically driven, damped nonlinear Schr¨-
dinger ~PDNLS! equation@3,11–15#

i ~f t1af!1fxx1~2ufu221!f1gf* 50, ~1!

wherea is the damping coefficient,g the driving strength.
This is a localized object of a pair of interacting~identical!
solitons, and it plays the role of a ‘‘molecule’’ in the one
dimensional ordered oscillatory patterns of PDNLS mu
solitons @16#. Of particular interest is theoscillation or the
periodic ‘‘collision’’ behavior of the bound solitons, which
most clearly demonstrates the particle character of the s
tons. However, from the viewpoint of particle nature, som
basic problems still remain unresolved; for example, whet
the identicalsolitons exchange their places or not at the c
lision instants@8#, or, does the soliton dynamics follow th
collision model in the classic sense? On the other hand, t
is a certain lack of clear understanding of the format
mechanism of this bound state. In this study we explore
internal dynamics of the bound state and its nonlinear co
plexity, and attempt to provide the ultimate answers to
pending questions. As before@10#, we shall use the sam
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symbolic notation for the polaronlike solitons; for instanc
S(↑↑) stands for the bound state.

As already reported@10#, for a givena, S(↑↑) is oscilla-
tory in the parameter rangeg1,g,g2 ; e.g., 1.0970,g
,1.1126 fora50.8. Below the lower thresholdg1 , it col-
lapses to a standing solitonS(↑), while above the upper
thresholdg2 , it becomes standing. In all the cases, the so
tary wavef is symmetric with respect to its ‘‘mass’’ cente
f(x,t)5f(2x,t), where the symmetric center is assum
to be situated atx50. As a result, the total momentumM
vanishes@10#. In order to study the collision dynamics, he
we define the momentaML andMR for the left (x,0) and
right (x.0) solitons, respectively, as follows:

ML52MR , MR[
1

2i E0

`

~f* fx2ffx* !dx. ~2!

This definition is based on the experimental evidence t
partitioning the fluid atx50 does not change the behavior
each soliton@9#. In fact, in the context of fluid dynamics, it is
straightforward to verify thatML (MR) is proportional to the
fluid momentum in the regionx,0 (.0) @17#. It follows
from Eqs.~1! and ~2! that

dML,R

dt
12aML,R56F ufu41

1

2
~ ufu2!xxGU

x50

. ~3!

In addition, we also define the left~right! soliton ‘‘position’’
XL (XR) as the one at which Im(f) or ufu reaches maximum
for x,0 (.0).

In the standing case (g.g2), both XL and XR are time
independent, and we have the steady solution to Eq.~3!,

ML,R56
1

2a F ufu41
1

2
~ ufu2!xxGU

x50

. ~4!

Since uf2uxx.0 at x50 for separated solitons (uXL2XRu
.0), we obtain thatML.0 andMR,0. It is strange that the
standingS(↑↑) can have two opposite momenta constan
flowing toward the symmetric center. Asg is increased from
g2 , the solitons are separated more and more, and t
ML↓0 andMR↑0. In the oscillating case (g1,g,g2), using
7899 © 1998 The American Physical Society
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the numerical data obtained from the direct simulation of E
~1!, we can easily compute the (ML ,XL) and (MR ,XR) tra-
jectories. Figure 1 shows some typical cases, including thg
dependence of the fixed point (XR ,MR) in the standing case
Unexpectedly, as we see, bothML and MR never reverse
their directions, although the solitons seem to ‘‘boun
back’’ suddenly at each collision instant. Therefore we ha
ML.0 and MR,0 for any case. Undoubtedly, the resu
negates the usual collision model, though the collisions b
a close resemblance to the classic oscillator. It also indic
that the solitons do not penetrate through each other in
interaction.

To understand the physical significance of the intrigu
phenomenon, we investigate the behavior whenS(↑↑) is of
marginal stability, i.e., wheng approachesg1 from above.
To avoid the possible influence from the boundaries~at x
56l /2), we select a large system size, namely,l 540, in
computer simulation. Figure 2~a! shows how the marginally
stable state evolves, whereh5Im(f), and Fig. 2~b! is the
time variation of the ‘‘particle number’’N @10#. HereN is
normalized with respect to a steady soliton@16#. From the
figure, one can easily identify three different stages, i.e.,
collapseto a standing soliton (N:2→1), the simultaneous
recreationsof two separate solitons away from the symm
ric center (N→3), and the rapid dying out of the~middle!
overlapping soliton (N:3→2, annihilation!. The appearance
of the triple peaks~of comparable amplitudes! after colli-
sions explain the usually overlooked phenomenon repo
in the early literature@8,18#. From the figure, one can als
see howS(↑↑) is distinct from the symmetricN52 bound
solitons in the integrable NLS system@19#. Undoubtedly, the
energy dissipation causes the collapse~inelastic collision!,
while the parametric pumping contributes to the recreati

FIG. 1. (MR ,XR) trajectories for differentg (a50.8, l 540).
In the cases of~a!, the identical solitons are always indistinguis
able in the collision process; while in~b!, they attract each other to
a minimum separation, so one can always tell one from the ot
With the increase ofg, the limit cycle becomes smaller and smalle
and wheng.g2 , it is ag-dependent fixed point@the line-connected
solid circles~c!#.
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~parametric amplification!. Therefore the periodic ‘‘colli-
sions’’ are actually a manifestation of the alternating inter
processes, i.e., the dissipatively induced collapses and p
metrically resonant recreations of the solitons. As the s
tons never bounce back or pass through each other,
certain that ML.0 and MR,0. If g is decreased

r. FIG. 2. Time evolution of the marginally stableS(↑↑) @(a,g)
5(0.8,1.097 03),l 540#. In ~a!, only the spatial portion,210,x
,10, is presented.

FIG. 3. Stability diagrams. The area betweenG1 andG2 is the
parameter region forS(↑), within whichL1 is the Hopf bifurcation
line of the state. The parameter region ofS(↑↑) is circumvented by
^’s. The curveg2 of the line-connecteds’s inside the region sepa
rates the oscillating and standing regions,R1 and R2 , while the
solid curveL2 is the Hopf bifurcation line ofS(↑↑). The region
bounded by the small diamonds,L, is the extended (R11R2) when
the symmetry is controlled.
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a little, i.e.,g,g1 , the input energy is not enough to rege
erate the solitons, and thusS(↑↑) transits toS(↑). On the
other hand, ifg is increased a little, the square wave of t
N(t) curve becomes a series of ‘‘spikes,’’ as is the ca
already studied in our previous work@10#. At a stronger ex-
citation (g.g2), the two reverse processes become stati
ary.

We find that the regular dynamics heavily depend
damping effect. Using the computed data, we have c
structed the stability diagram ofS(↑↑) in the space of con-
trol parameters~a,g!, as is shown in Fig. 3~note that this
diagram is much more comprehensive than ours before@10#!.
Also included in the figure is the stability diagram ofS(↑).
The diagrams are calculated for the system sizel 540. We
have also examined several differentl , with various bound-
ary conditions, but the results are almost the same for al
.30, so they are valid even forl 5`. Our result forS(↑)

FIG. 4. Attractors ofS(↑↑), where@j,h#5@Re(f),Im(f)#x50.
~a! (a,g)5(0.4,0.95)PR2 , ~b! (a,g)5(0.5,0.85)PR2 , and ~c!
(a,g)5(0.4,0.7669)PR1 (1000,t,1750).
e
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agrees with that reported by other authors@15#. In the one-
soliton stateS(↑), an internal oscillation mode of frequenc
f h;1 is excited via a Hopf bifurcation above the dotted li
L1 . When ~a,g! is close to the left stability boundaryG2 ,
S(↑) exhibits some complex bifurcation behaviors leading
temporal chaos. However, it was proved@15,20# that S(↑)
can be stably sustained in the NLS limit, (a,g)→(0,0), as
long as~a,g! is within the narrow parameter band just abo
the lower thresholdG1 . For S(↑↑), its whole stability re-
gion, R1øR2 , is contained within that ofS(↑). Because
supportingS(↑↑) requires more external energy, its low
stability boundaryg5g1(a) is high aboveG1 . Above the
same upper boundary lineg5g3@'A(11a2)# @13,21#, both
S(↑) and S(↑↑) are unstable with respect to continuo
wave excitations. For the finite system~namely, l ,20)
where the boundaries significantly affect the behavior
S(↑↑), the stability region is dependent onl . Both our labo-
ratory@9# and numerical investigations have shown that, w
the decrease ofl , R1øR2 will move out of the domain for
S(↑) in the (1g) direction. Since only the internal dynamic
is concerned, the details of thel -dependent effect will not
be addressed here.

We find that the same internal oscillation of frequencyf h
occurs toS(↑↑) also, as long as~a,g! moves acrossL2 from
the right of R1øR2 . As compared with the collision fre
quencyf c , which is of order 0.1, thef h mode is an oscilla-
tion of high frequency~hf!. The bifurcation behavior de
pends on where~a,g! is. Inside regionR2 , the hf mode is
excited as the fixed point loses its stability and is replaced
a limit cycle in relevant phase space, as shown in Fig. 4~a!.
In this case,S(↑↑) becomes vibrating at frequencyf h .
While in the oscillation regionR1 , the hf mode appears a
some trembling of the wholeS(↑↑) after each collision,
which soon dies out, as shown in Fig. 4~b!. In both cases,

FIG. 5. ~a! Broken symmetry and~b! slow swing of S(↑↑)
@(a,g)5(0.35,0.8836).#



ea

to

y,
th

t
th

ur

b
n

io
n
he
fe

he
-
hen
ial
ory
d at

si-

met-
ys-
-
he
ng
or-
ned
in
s,
or

se

o.
ics

7902 PRE 58XINLONG WANG
continuous waves~cw! of small amplitude are emitted from
the localized site, due to the hf vibration. InsideR1 , if ~a,g!
further moves in the (2a) direction, then the hf mode is
parametrically amplified. In this case, the strong nonlin
interaction between thef c and f h modes will have the colli-
sions irregular or chaotic. As a result, the phase trajec
appears as a strange attractor, as shown in Fig. 4~c!. In either
R1 or R2 , if ~a,g! comes close to the left stability boundar
S(↑↑) can undergo a spatial bifurcation, which breaks
spatial symmetry. The broken symmetry then gives rise
the nonsymmetrical cw emission, which, in turn, causes
bound state as a whole to swing aroundx50 slowly, as is
shown in Fig. 5. When~a,g! moves out of eitherR1 or R2
from the left stability boundary, the spatial coherent struct
can no longer be preserved. Here it is quite interesting
note that we can prevent the symmetry from being broken
settingfxux5050. This is equivalent to inserting a partitio
board at the symmetric center in experiment@9#. Conse-
quently, the stability region ofS(↑↑) is considerably ex-
tended in the (2a) direction ~the area bounded byg1* and
g3* in Fig. 3!. Even so, the self-destruction ofS(↑↑) is un-
avoidable in very weakly damping media (a,0.2).

In conclusion, we have shown the collapse-recreat
mechanism of the collision behavior of the bound solito
and the significance of damping effect in maintaining t
regular dynamics. Here we give some remarks on the dif
ence between the PDNLS bound stateS(↑↑) and those in
several different but related models@2–7#. It was noted in
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Ref. @12# and proved in Ref.@3# that there is no oscillating
tail for the PDNLS solitons due to the presence of t
complex-conjugate termgf* in Eq. ~1!. This has been con
firmed by our experimental and numerical observations w
a is sufficiently large. As a result, the interaction potent
turns out to be a single-well one, rather than an oscillat
one as was usually found in the other models mentione
the beginning. In the potential structure, ifg,g1 , the at-
tracting solitons will undergo a collapse due to energy dis
pation; but wheng is a little greater thang1 , following the
collapse a pair of new solitons can be created under para
ric pumping. By contrast, in the ac-driven-damped NLS s
tem, it was observed@4# that such an oscillatory pair of soli
tons can only last for a finite time. Finally, we stress t
special roles of damping effect in forming and maintaini
S(↑↑). Indeed, damping effect is also necessary for the f
mations of stable bound states in the other models mentio
at the beginning. However, for the PDNLS bound state,
addition to the direct contribution to the collision dynamic
sufficiently large damping effect can effectively suppress
attenuate the hf internal oscillation which would otherwi
spoil the collision process or even destabilizeS(↑↑). This
explains why in experimentS(↑↑) is more stable and its
shape looks smoother in dirty water than in clean water.

The project is supported by the NSFC under Grant N
19774029, and the National Laboratory of Modern Acoust
in Nanjing University.
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