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Nature of the parametrically excited bound soliton state
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The internal dynamics of the parametrically excited bound state of double solitons is explored, in particular,
the periodic “collision” behavior of the identical solitons. The results reveal the collapse-recreation mecha-
nism of the endless “collisions,” in which momentum of each soliton always flows toward the symmetric
center of the state. It is also found that damping dissipation plays an important role in maintaining the regular
dynamics of “collisions.” In weakly dissipative media, the parametric excitation of some other internal
oscillation mode of high frequency can have the soliton-soliton interaction irregular, or can even break the
spatial symmetry[S1063-651X98)07711-3

PACS numbe(s): 03.40.Kf, 47.35+i, 47.20.Ky, 42.65.Tg

Bound states of solitons have been an active topic in solisymbolic notation for the polaronlike solitons; for instance,
ton physics. As is well known, the bound states in the stanS(11) stands for the bound state.
dard nonlinear Schainger(NLS) system are unstable dueto  As already reportefl10], for a givena, S(17) is oscilla-
the zero binding energhl]. However, several recent inves- tory in the parameter range;<y<1y,; e.g., 1.097&y
tigations[2—7] have shown that stable bound states may ex<<1.1126 fora=0.8. Below the lower thresholgt,, it col-
ist in various perturbed NLS and related equations that artapses to a standing solito8(7), while above the upper
usually of thedriven-dampedype. In these systeni2-5], a  thresholdy,, it becomes standing. In all the cases, the soli-
combination of dispersion and dissipation effects renders theary wave¢ is symmetric with respect to its “mass” center:
soliton tails exponentially decaying with oscillations rather ¢(x,t) = ¢(—x,t), where the symmetric center is assumed
than simple decaying. These tails will naturally give rise to ato be situated ak=0. As a result, the total momentum
set of local minima of the interaction potenti@], which  vanisheq10]. In order to study the collision dynamics, here
account for the formation of the bound states. In generalwe define the momentlsl, andMp, for the left (x<<0) and
such stable bound states take the forms of the fixed pointgght (x>0) solitons, respectively, as follows:
[2,3,6,7 or the infinite-period limit cycld5] of the underly-
ing dynamical systems. What interests us here igudla- 1 (= .
tory bound state that was experimentally obser{/@@] in ML=—Mg, MREE JO (9" =P )dx. (2
Faraday’s water resonator and numerically reprodyd&d

with the parametrically driven, damped nonlinear SChro this definition is based on the experimental evidence that
dinger (PDNLS) equation[3,11-19 partitioning the fluid ak=0 does not change the behavior of
each solitor}9]. In fact, in the context of fluid dynamics, it is
(et ad)+ duxt (2| d|2—1)p+ ydp* =0, (1) straightforward to verify thal, (Mg) is proportional to the
fluid momentum in the regiox<0 (>0) [17]. It follows

. . - . from Egs.(1) and(2) that
where « is the damping coefficienty the driving strength.

This is a localized object of a pair of interactiffiglentica) dM_ g
solitons, and it plays the role of a “molecule” in the one- gr T2aMir==
dimensional ordered oscillatory patterns of PDNLS multi-
solitons[16]. Of particular interest is thescillation or the
periodic “collision” behavior of the bound solitons, which
most clearly demonstrates the particle character of the sol
tons. However, from the viewpoint of particle nature, some or x<0 (>0). . .
basic problems still remain unresolved; for example, whether In the standing casey>y,), both X, and.XR are time
the identical solitons exchange their places or not at the col-Ndependent, and we have the steady solution to(&q.
lision instantg[8], or, does the soliton dynamics follow the 1 1
collision model in the classic sense? On the other hand, there M| g= i_[ |64+ = (|2 sx
is a certain lack of clear understanding of the formation ' 2a 2
mechanism of this bound state. In this study we explore the
internal dynamics of the bound state and its nonlinear comSince |$2|,,>0 at x=0 for separated solitons X, — Xg|
plexity, and attempt to provide the ultimate answers to the>0), we obtain thaM >0 andMg<O0. It is strange that the
pending questions. As befofd0], we shall use the same standingS(71) can have two opposite momenta constantly

flowing toward the symmetric center. Asis increased from

v», the solitons are separated more and more, and thus,

*Electronic address: xlwang@nju.edu.cn M, 10 andMg10. In the oscillating casey; < y<v,), using

(©)

1
|¢|4+ §(|¢|2)xx

x=0

In addition, we also define the Igfitight) soliton “position”
X, (Xg) as the one at which Ing) or |¢| reaches maximum

(4)

x=0
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In the cases ofa), the identical solitons are always indistinguish- t

able in the collision process; while iib), they attract each other to . . .
a minimum separation, so one can always tell one from the other.: (glg '1%gl—lgiﬁioig?orn(2;;hsn?;iLg;n;l)lgﬂsaﬁasgﬁTjg_[ (106!))(
With the increase of, the limit cycle becomes smaller and smaller, T ’ ’ ! !
and wheny>y,, itis ay-dependent fixed poirthe line-connected <10, is presented.
solid circles(c)].

(parametric amplification Therefore the periodic “colli-
the numerical data obtained from the direct simulation of Eqsions” are actually a manifestation of the alternating internal
(1), we can easily compute théM( ,X,) and Mg,Xg) tra-  processes, i.e., the dissipatively induced collapses and para-
jectories. Figure 1 shows some typical cases, includingythe metrically resonant recreations of the solitons. As the soli-
dependence of the fixed poinXg,Mg) in the standing case. tons never bounce back or pass through each other, it is
Unexpectedly, as we see, bolfh, and Mg never reverse certain that M| >0 and Mg<O. If vy is decreased
their directions, although the solitons seem to “bounce
back” suddenly at each collision instant. Therefore we have 12
M, >0 and Mr<0 for any case. Undoubtedly, the result
negates the usual collision model, though the collisions bear
a close resemblance to the classic oscillator. It also indicates
that the solitons do not penetrate through each other in the
interaction.

To understand the physical significance of the intriguing
phenomenon, we investigate the behavior wBéht) is of
marginal stability, i.e., wheny approachesy, from above.

To avoid the possible influence from the boundariasx
==+//2), we select a large system size, namely: 40, in 0.6
computer simulation. Figure(@ shows how the marginally

stable state evolves, wherg=Im(¢), and Fig. Zb) is the

time variation of the “particle number'N [10]. HereN is 0.4
normalized with respect to a steady solitd6]. From the

figure, one can easily identify three different stages, i.e., the
collapseto a standing solitonN:2—1), the simultaneous 0.2 . . . .
recreationsof two separate solitons away from the symmet- 6z 03 04 05 06 07 08
ric center N—3), and the rapid dying out of th@niddle) «

overlapp_ing soliton:3— 2, annihilation)._The appearances FIG. 3. Stability diagrams. The area betwdepand T, is the

of the triple peaks(of comparable amplitudgsafter colli- 5 ameter region faB(1), within which A , is the Hopf bifurcation

sions explam_ the usually overlooked phenomenon reporteghe of the state. The parameter regionSf 1) is circumvented by
in the early literaturg8,18]. From the figure, one can also g's, The curvey, of the line-connected's inside the region sepa-
see howS(11) is distinct from the symmetritN=2 bound  rates the oscillating and standing regiof, and R,, while the

solitons in the integrable NLS systdri9]. Undoubtedly, the  solid curveA, is the Hopf bifurcation line ofS(71). The region

energy dissipation causes the collagslastic collision, bounded by the small diamond$,, is the extendedR; + R,) when

while the parametric pumping contributes to the recreationshe symmetry is controlled.
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FIG. 4. Attractors ofS(71), where[ &, n]=[Re(®),Im(¢)l=o-
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FIG. 5. (a) Broken symmetry andb) slow swing of S(11)
[(@,)=(0.35,0.8836)]

agrees with that reported by other authfit§]. In the one-
soliton stateS(7), an internal oscillation mode of frequency
fn,~1 is excited via a Hopf bifurcation above the dotted line
A1. When(a,y) is close to the left stability boundary,,
S(7) exhibits some complex bifurcation behaviors leading to
temporal chaos. However, it was provgtb,2Q that S(1)
can be stably sustained in the NLS limit,(y)—(0,0), as
long as(«,) is within the narrow parameter band just above
the lower threshold™;. For S(77), its whole stability re-
gion, R{UR,, is contained within that ofS(7). Because
supportingS(T1) requires more external energy, its lower
stability boundaryy= y,(«) is high abovel';. Above the
same upper boundary ling= ys[ ~ (1 + «?)] [13,21], both
S(7) and S(71) are unstable with respect to continuous
wave excitations. For the finite systefmamely, /<20)
where the boundaries significantly affect the behavior of
S(11), the stability region is dependent @h Both our labo-

a little, i.e., y<y,, the input energy is not enough to regen- ratory[9] and numerical investigations have shown that, with

erate the solitons, and th&11) transits toS(7). On the

the decrease of, R{UR, will move out of the domain for

other hand, ify is increased a little, the square wave of theS(7) in the (+ ) direction. Since only the internal dynamics
N(t) curve becomes a series of “spikes,” as is the casds concerned, the details of thé-dependent effect will not

already studied in our previous wofk0]. At a stronger ex-

be addressed here.

citation (y>vy,), the two reverse processes become station- We find that the same internal oscillation of frequerfigy

ary.

occurs toS(71) also, as long a&x,y) moves acrosa , from

We find that the regular dynamics heavily depend onthe right of R{UR,. As compared with the collision fre-
damping effect. Using the computed data, we have conguencyf., which is of order 0.1, thé, mode is an oscilla-

structed the stability diagram &(11) in the space of con-
trol parameterga,y), as is shown in Fig. 3note that this
diagram is much more comprehensive than ours befidp.
Also included in the figure is the stability diagram $f7).
The diagrams are calculated for the system gize40. We
have also examined several differefitwith various bound-
ary conditions, but the results are almost the same for"all
>30, so they are valid even fof=c. Our result forS(7)

tion of high frequency(hf). The bifurcation behavior de-
pends on wheréa,y) is. Inside regionR,, the hf mode is
excited as the fixed point loses its stability and is replaced by
a limit cycle in relevant phase space, as shown in Fig).4

In this case,S(11) becomes vibrating at frequenchy,.
While in the oscillation regiorR;, the hf mode appears as
some trembling of the whol&(11) after each collision,
which soon dies out, as shown in Figib# In both cases,
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continuous wavesgcw) of small amplitude are emitted from Ref.[12] and proved in Ref[3] that there is no oscillating
the localized site, due to the hf vibration. InsiRe, if (a,)  tail for the PDNLS solitons due to the presence of the
further moves in the € «) direction, then the hf mode is complex-conjugate terny¢* in Eq. (1). This has been con-
parametrically amplified. In this case, the strong nonlineafirmed by our experimental and numerical observations when
interaction between the, andf, modes will have the colli- « is sufficiently large. As a result, the interaction potential
sions irregular or chaotic. As a result, the phase trajectoryurns out to be a single-well one, rather than an oscillatory
appears as a strange attractor, as shown in Fj. kh either  one as was usually found in the other models mentioned at
R; or R,, if (a,) comes close to the left stability boundary, the beginning. In the potential structure, < vy,, the at-
S(771) can undergo a spatial bifurcation, which breaks thetracting solitons will undergo a collapse due to energy dissi-
spatial symmetry. The broken symmetry then gives rise tgation; but wheny is a little greater thary,, following the
the nonsymmetrical cw emission, which, in turn, causes theollapse a pair of new solitons can be created under paramet-
bound state as a whole to swing arouad 0 slowly, as is  ric pumping. By contrast, in the ac-driven-damped NLS sys-
shown in Fig. 5. Wher{a,y) moves out of eitheR; or R,  tem, it was observef#] that such an oscillatory pair of soli-
from the left stability boundary, the spatial coherent structurgons can only last for a finite time. Finally, we stress the
can no longer be preserved. Here it is quite interesting tspecial roles of damping effect in forming and maintaining
note that we can prevent the symmetry from being broken bys(1 7). Indeed, damping effect is also necessary for the for-
setting ¢,|,—o=0. This is equivalent to inserting a partition mations of stable bound states in the other models mentioned
board at the symmetric center in experimg¢fi. Conse- at the beginning. However, for the PDNLS bound state, in
guently, the stability region oB(171) is considerably ex- addition to the direct contribution to the collision dynamics,
tended in the € «) direction (the area bounded by} and  sufficiently large damping effect can effectively suppress or
¥% in Fig. 3. Even so, the self-destruction §{11) is un-  attenuate the hf internal oscillation which would otherwise
avoidable in very weakly damping media€0.2). spoil the collision process or even destabilgg ). This

In conclusion, we have shown the collapse-recreatiorfXPlains why in experimen§(11) is more stable and its
mechanism of the collision behavior of the bound solitonsshape looks smoother in dirty water than in clean water.
and the significance of damping effect in maintaining the
regular dynamics. Here we give some remarks on the differ- The project is supported by the NSFC under Grant No.
ence between the PDNLS bound st8&(g 1) and those in 19774029, and the National Laboratory of Modern Acoustics
several different but related modgla—7]. It was noted in in Nanjing University.

[1] V. I. Karpman and S. S. Solov'ev, Physicad)487(1981). [16] X. L. Wang and R. J. Wei, Phys. Rev.%, 2405(1998.

[2] B. A. Malomed, Phys. Rev. A4, 6954(1991. [17] In Faraday's experiment, assume that the fluid surface dis-
[3] B. A. Malomed, Phys. Rev. B7, 2874(1993. placement£(x,y,t)=O(\/e¢) and the velocity potential field
[4] D. Cai, A. R. Bishop, Niels Ghabech-Jenson, and B. A. Mal- d(x,y,z,t)=0(\Veh) where ¢(x,t)=0(1) ande is a small

omed, Phys. Rev. B9, 1677(1994.
[5] V. V. Afanasjev, B. A. Malomed, and P. L. Chu, Phys. Rev. E
56, 6020(1997.

parameter measuring the strength of nonlinearity< €8<1)
[12]. The fluid momentumi g in the right region ¥>0) is

[6] V. V. Afanasjev, Phys. Rev. 57, 1088(1998. given by r=p[dx[gdy[¢ dzV® (p is the density of fluid,

[7] 1. V. Barashenkov, Yu. S. Smirnov, and N. V. Alexeeva, Phys. b is the breadth of the fluid channel, is the static depth of
Rev. E57, 2350(1998. fluid). By invoking the multiscale expansions féand®, and

[8] J. Wu, R. Keolian, and I. Rudnick, Phys. Rev. L&®, 1421 averagingl » over the fast oscillation of Faraday frequenay
(1984. we obtain (/2m) 2™ “[rdtx eM ge,+ 0(€), Wheres, is the

[9] X. L. Wang and R. J. Wei, Phys. Lett. 292 1 (1994.
[10] X. L. Wang and R. J. Wei, Phys. Rev. Lef8, 2744(1997).
[11] Y. S. Kivshar and B. A. Malomed, Rev. Mod. Phy&l, 763

unit vector in thex direction. The same relation can also be
obtained for the left solitonX<0). For the details, see, for

(1989. example, X. L. Wang, Sci. China &8, 335(1995.

[12] J. W. Miles, J. Fluid Mech148 451 (1984 [18] R. J. Weiet al,, J. Acoust. Soc. Am88, 469 (1990

[13] I. V. Barashenkov, M. M. Bogdan, and V. I. Korobov, Euro- [19] Hermann A. Haus and Mohammed N. Islam, IEEE J. Quantum
phys. Lett.15, 113(1991). Electron.QE-21, 1172(1985.

[14] B. Denardo, W. Wright, and S. Putterman, Phys. Rev. ledt.  [20] H. Friedel, E. W. Laedke, and K. H. Spatschek, J. Fluid Mech.
1518 (1990; B. Denardoet al, Phys. Rev. Lett68, 1730 284, 341(1995.
(1992. [21] E. W. Laedke and K. H. Spatchek, J. Fluid Me@23 589

[15] M. Bondila, I. V. Barashenkov, and M. M. Bogdan, Physica D (1991).
87, 314 (1995.



